Section 9 – Multiple Regression – Predictors and Terms
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[bookmark: _GoBack]9.0 – Terms vs. Predictors
In multiple regression we study the conditional distribution of a response variable () given a set of potential predictor variables .  As dicsussed previously, these variables can have any data type – continuous/discrete, ordinal, or nominal.  In this section we focus on the concept of terms.  Terms in a multiple regression model are functions of the predictors .   We will denote the terms in a multiple regression model using  to avoid confusion with the predictors ().
9.1 – Multiple Linear Regression Model
The form of the multiple regression model is given by

and typically we assume .

In matrix notation,

where,



 in our regression model and the  are the observed values of the jth term.   As before, the OLS estimates of the parameters  are found using matrices as:



Thus specifying the mean function part of the model involves deciding what terms to include in the model!   For example, in Example 8.1 we considered the several models for the selling price () as a function of .


          Note: These are terms in these models.






9.2 - Types of Terms
As we saw in Example 8.1 terms can be the predictors themselves, as in the case of , or a function of a predictor as in the case of   Recall,  and  if .   Below we give the most commonly used terms in a multiple regression models.  These are the basic “building blocks” of a multiple regression model.

Intercept term
   This term gives the column of 1’s in the model matrix .  We do not 
                   need to include an intercept term, but we almost always do!

Predictor terms
   Terms can be the predictors themselves as long as the predictor is 
                     meaningfully numeric! (i.e.  count or a measurement).


Polynomial terms
   These terms are integer powers of numeric predictors, e.g. 


Transformation terms
    Here  is the Tukey Power Transformation Family.

		

Interaction terms

   Here the term  is a product of two terms (, where these 
                              two terms could be of any other term type.

Dummy termsOther examples of :



      

These terms generally come from a dichotomous
nominal predictor as in the case of Fireplace? (Y/N)
in Example 8.1.

Factor terms (nominal or ordinal variables with more than 2 levels)
Suppose the  predictor  is a nominal or ordinal variable with  levels (.   Then we chose one of the levels as the reference group and create dummy terms for the remaining
 levels.

E.g.   Suppose 

We could choose 4 = Oil as the reference group and create dummy variables for the other two manufacturers, i.e. 



Why wouldn’t we create a dummy variable for each level of the  levels of the variable?  For this example that would mean also creating,



The problem with doing this is that the sum of the columns corresponding to these terms  would be a column of ones.   When one column in the  matrix is linear combination of other columns in the matrix then the inverse of the matrix  doesn’t exist, i.e. the matrix  is singular.   

Example 9.1 – Saratoga, NY Homes and Fuel Type  (Datafile: Saratoga, NY Homes.JMP)
As an example consider the regression of selling price on fuel type which is a nominal variable coded as (2 = Gas, 3 = Electric, 4 = Oil).  Below is a portion of the data table from JMP with these variables.  I have created three dummy variables, one for each fuel type.

[image: ]
If we perform the regression of selling price (Y) on all three of the dummy variables, one for each fuel type this is what happens in JMP:
[image: ]
If we simply put Fuel Type as coded (2 = Gas, 3 = Electric, 4 = Oil) into the model, JMP will automatically drop one of the levels, 4 = Oil in case, and estimate parameters associated with the dummy variables for the other two fuel types. 
[image: ]   [image: ]


Note:  Regression on a single nominal or ordinal variable with  levels is equivalent to one-way ANOVA covered in STAT 310 and STAT 365.  Furthermore, one can show ANOVA (of any kind) is really just regression on factor terms.   
Important Note on Coding for Nominal and Ordinal Predictors
It is important to realize that when working with nominal or ordinal predictors in JMP that the default coding is (-1,+1), i.e. contrast coding, NOT (0,1), i.e. dummy or indicator function coding.   However, you can select the Response Name > Estimates > Indicator Parameterization Estimates option to obtain parameter estimates using dummy coding which I highly recommend doing.    

[image: ]

R uses dummy variable coding as the default!  Thus when developing multiple regression models I generally use R for this and other reasons.  I will be giving you a very thorough handout/tutorial on performing multiple regression in R shortly.

9.3 – Summary of Multiple Linear Regression (MLR) – predictors and terms
As stated above the general form of the multiple regression model is given by

where the  are the model terms created from the predictors .  We also typically assume that the .   
To develop a multiple linear regression (MLR) model we need to determine what terms to create and include in our model for the conditional mean, .   This may seem like a daunting process as the possibilities are seemingly infinite, especially when we have a large number of predictors (i.e.  is large), however there are a number general guidelines and tools that we can use help us in the model development process.  In subsequent sections will look focus more closely on some of the term types discussed in this section.   In the next section we will focus on cases where the predictors are primarily numeric (continuous/discrete), in Section 11 we will focus on factor and interaction terms, and in Sections 14 & 15 we will focus on response and predictor transformations respectively.
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